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A B S T R A C T

Geometric specifications are important control objects of mechanical components in modern manufacturing. For
instance, circularity and cylindricity are essential indicators of high-precision rotary parts. With an increase in
the number of measurement points, traditional statistical process control (SPC) methods cannot be applied in
many processes because the measurements are highly correlated. During the past two decades, several studies
have focused on profile monitoring. A profile, which describes the relationship between independent and re-
sponse variables, is suitable for large-scale, complex and high-dimensional data monitoring. However, the issue
of spatial correlations in measurement points remains unsolved. Considering spatial correlations, this study
focuses on circular and cylindrical profiles and proposes a new method combining a spatial correlation model
with control charting. SPC methods are utilized to establish control charts and analyze the control processes. The
results of simulation and case study indicate that the proposed method is feasible and effective in monitoring
circular and cylindrical profiles and can be extended to other geometric specifications.

1. Introduction

From design, manufacturing to recycling, the tasks of geometric
specifications cover the entire life cycle of the product [1]. Geometric
specifications, which refer to the deviation of the actual shape of a
machined part from its ideal shape, have received substantial attention
in recent years, as they considerably influence the quality of mechanical
components. Geometric specifications (such as circularity and cylin-
dricity) are important control objects and particularly impact the
sealing, reliability and life of products [2,3].

Statistical process control (SPC) is a common method for the control
of geometric specifications. Deng and Chin [4] explored the factors
affecting the circularity of a hole by using Taguchi methods. Keshteli
et al. [5] proposed a method to calculate the process capability index of
a circular profile. However, these methods focus only on the overall
conditions of circularity and cylindricity, resulting in an inaccurate
control process.

The development of measurement technology has led to an increase
in the number of measurement points to provide detailed information
regarding the geometric specification shapes. Under this circumstance,
profile monitoring has been proposed. A profile describes the re-
lationship between explanatory and response variables, making ex-
tensive use of measurements. Research on profile monitoring has

expanded from linear [6,7] to nonlinear [8–10], unitary to multivariate
[11,12], 2-D [13] to 3-D surface [14], parametric to nonparametric
domains [15–17] and single channel to multichannel [18].

For circular and cylindrical profile monitoring, some methods con-
sidering the features of circular and cylindrical profiles have been
proposed. Cho and Tu [19] described a harmonic decomposition
method for circular profile variation. Based on this method, Jiang et al.
[20] evaluated roundness from circular coordinate data measured by a
coordinate measuring machine (CMM) and Zhang et al. [21] extended
this method to cylindrical components. Ramaswami et al. [22] pro-
posed a new circular feature sampling strategy to determine the optimal
sample size and calculated the circular profile error by minimum cir-
cumscribed circle method. Principal component analysis [23–25] and
independent component analysis [26] methods are used to separate the
components of geometric specifications and analyze the causes of error.
Some machine learning methods such as neural network algorithms
[27] and Gaussian processes [28,29] have been proposed to detect
changes in the profiles.

However, in a data-rich manufacturing environment, a large
amount of data causes strong spatial correlations among measurements.
Colosimo et al. [30] explored a spatial autoregressive regression (SARX)
model to study the spatial correlations of error terms. Soleimani,
Noorossana and Amiri [31] considered profile autocorrelation in linear
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profile monitoring. They assumed that error terms are correlated and
extended this correlation to observations. Yu and Liu [32] proposed a
new control chart to monitor the mean shifts of autocorrelated manu-
facturing processes. For profiles’ data violating the assumption of
normal distribution, Liu et al. [29] proposed a mixed-effect profile
model to monitoring wafer thickness. However, few studies have fo-
cused on the case that the observations are spatially correlated.

The composition of a geometric specification can be expressed as:

= +y f x( ) (1)

where y is the observation of the deviation from nominal value, f x( ) is
the system error, and is the error term. Current profile monitoring
methods have been determined the value of f x( ) [19,21], and some
studies considered the correlations in [31,32]. Few researchers have
addressed the problem of the correlations in. Therefore, the aim of this
study is to discuss the spatial correlations of the observations and
eliminate the effects of spatial correlations on circular and cylindrical
profile monitoring. Based on spatial lag model (SLM) in spatial
econometrics [33], considering spatial correlations among observa-
tions, this study proposes a new method for monitoring circular and
cylindrical profiles in combination with control charts in SPC.

The remainder of this paper is organized as follows. In Section 2, the
proposed method is introduced and an overview of this study is pre-
sented. Section 3 compares the proposed method with other methods
via simulations. In Section 4, an engineering case study is presented to
verify the feasibility and validity of the proposed method. Finally,
Section 5 summarizes the study and explores the implications for future
research.

2. Proposed method

2.1. Overview

This subsection introduces the proposed method for circular and
cylindrical profile monitoring. Considering the spatial correlations of
observations that often occur in the measurement points of industrial
manufacturing processes, a new parametric model for the profiles is
proposed. This method focuses on the geometric specifications with
spatial correlations, which can be decomposed into three components:
spatial correlation error, systematic error and random error. Spatial
correlation error is represented by SLM model, which can express the
influence of adjacent points. Systematic error comes from the regular
source of error during processing. The determination of the systematic
error for the circle and the cylinder will be described in detail in the
subsection 2.2 and 2.3, respectively. In this method, the deviation from
the nominal value of a point consists of three parts: the observations of
adjacent points, the systematic error term and the error term, which can
be expressed as

= + +
=

y W y X
s

p
s

s
1

( ) '
(2)

where = …X x x x[ ]r
'

1 2 , represents the r independent regression variables.
= …b b b[ ]r1 2 , represents the coefficient of r independent regression

variables. W s( ) is the s -order spatial weight matrix. The definition of
W s( ) is as follows: The weight of the adjacent s points is equal to 1 and
that of the rest is equal to 0. The error term obeys a normal dis-
tribution with a mean of 0 and variance of 2. is an unknown lag
coefficient representing the strength of spatial correlations. The range
of is 0–1. When the correlation is significant, ρ is close to 1. The
experimental data should be pre-treated to obtain the value of y be-
cause the circular profile should not depend on the center position and
the average radius observed on each profile [23]. The value of y is
calculated by subtracting the radius of the least square circle (LSC) and
centered on the LSC center.

The flow diagram of this method is shown in Fig. 1 and the im-
plementation steps are as follows:

Step 1: Establish a suitable parametric model for the profiles. In
spatial correlations analysis, Moran test can be used to measure the
degree of spatial correlations [35]. In the case that there are no spatial
correlations, an ordinary least squares (OLS) regression model is es-
tablished. In the case that spatial correlations exist, LM test is im-
plemented to obtain more comprehensive diagnostic tests for auto-
correlation. If spatial correlations of observations are more significant,
a suitable model should be established based on SLM; If spatial corre-
lations of error terms are more significant, a suitable model should be
established based on spatial error model (SEM) [36,37].

Step 2: Estimate the model parameters. Based on the parametric
model in step 1, the systematic error term is determined and the model
parameters are estimated.

Step 3: Design charts for the parameters. According to the control
chart methods in SPC, the statistics of the parameters are calculated and
suitable control charts are designed to monitor the profiles.

The monitoring steps for the circular and cylindrical profiles are
described in subsections 2.2 and 2.3, respectively.

2.2. Circular profile monitoring

Assume that there are M circular profiles and each circular profile
= …m m M( 1, 2 , ) has N observation points equally spaced on the cir-

cumference. The deviation of each = …n n N( 1, 2, , ) point in the m th
profile is represented by ynm, as shown in Fig. 2. The abscissa is the
value of n. Based on SLM, the circular profile model can be expressed as

= + +
=

y W y X bnm s

p
sm

s
nm n m nm1

( ) '
(3)

Due to the influence of the machine tool spindle eccentricity, vi-
bration, ball wear and so on, the rotary parts tend to produce specific
shapes during processing. Fig. 3 shows several typical features of cir-
cular profiles.

According to subsection 2.1, the monitoring steps for the circular
profile are as follows:

Step 1: Establish a suitable parametric model. First, Moran test is
used to measure the degree of spatial correlations. The test result is
expressed in Moran index (Moran's I), which describes the degree of
similarity between the observed value and the adjacent spatial ele-
ments. The Moran test is based on the least squares estimate to establish
the following statistics:

= ×n
W

W Y Y Y Y
Y Y

I
( ¯ )( ¯ )
( ¯ )i j ij

i j ij i j

i i
2

where Yi and Yj are observations of spatial units; Ȳ is the average value
of Y ; n is the number of spatial units andW is the spatial weight matrix.

When Moran's I is greater than 0, the data presents positive corre-
lation. The larger the value is, the greater the spatial correlation will be.
When Moran's I is less than 0, the data presents spatial disparity. The
smaller the value is, the greater the spatial disparity will be. Spatial
data is approximately randomly distributed when Moran's I is close to
zero.

Then, as introduced in subsection 2.1 step1, LM test is implemented
according to the results of Moran test to obtain more comprehensive
diagnostic tests for spatial correlation. The calculation process of LM
test can refer to the Breusch and Pagan [37]. LM test has two statistics,
LM-Lag and LM-Error, to determine whether the SLM or SEM model
should be selected. If LM-Lag is more significant, a suitable model
should be established based on SLM; If LM-Error is more significant, a
suitable model should be established based on SEM. SLM is the mutual
effect among the response variables while SEM is the influence of ad-
jacent unit errors on the observed value.

Since the spatial correlations of observations is more significant
(refer to the test results in Section 3, Table 1), the circular profile model
should be based on SLM, as shown in Eq. (3).

Step 2. Determine the systematic error term
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During processing, the harmonic error that typically appears in ro-
tary part can be regarded as a periodic function due to the rotational
error of the machine tool. The research of Damir [38] indicated that the
circular profile can be simulated by Fourier harmonics. They descripted
the minimum number of Fourier harmonics to characterize the circular
profile by the means of the frequency components decomposition. Cho
& Tu [19] validated the harmonic model with a large number of actual
circular and cylindrical profiles that are produced by turning and cy-
lindrical grinding processes. Hii et al. [39] studied the relation between

circular profiles and spindle motion error. A reflection mode of the
spindle motion error on the circular profile was evaluated. Colosimo
et al. [30] concluded the possible error forms of the spindle in the
course of machining and the corresponding frequency components.
Each spindle error can be characterized by specific amplitude and fre-
quency components.

Therefore, the systematic term X bn m
' in Eq. (3) can be determined by

the Fourier transform given by Eq. (4). The unrelated frequency com-
ponents can be filtered out or separated from the systematic term via

Fig. 1. Process flowchart for the proposed method.

Fig. 2. (a) yj in polar coordinate system and (b) yj in cartesian coordinate system.
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the Fourier harmonic separation.

= + +
=

X b
N

b
N

b f t b f t1 2 [ cos( ( 1)) sin( ( 1))]n m m
k

k

k m k km k
'

0
1

2
2 1 2

(4)

where =f k N(2 / )k ; k is the k th harmonic separated by the Fourier
transform; and t is the t th measurement point in the part. In order to
determine the value of k, the appropriate frequency components are
briefly prespecified by industrial knowledge and the frequency de-
compositions of experiments are also needed. In practical applications,
Damir [38] have experimentally proved that the second and third
harmonics are the main components in the circular frequency compo-
nents. And by analyzing the weight of all amplitudes relative to the
main components, they gave suggestions for the rang of the order of
Fourier harmonics: 1) drilled surfaces: the 2nd harmonic to the 6th
harmonic; 2) turned surfaces: the 2nd harmonic to the 10th harmonic;
3) cylindrical and centreless ground surfaces: the 2nd harmonic to the
24th harmonic.

In experiments, we can refer to the frequency components given by
Damir and combine the value of frequency decomposition to determine
the harmonic components.

Step 3. Parameter estimation
Parameter estimation is performed based on the determination of

the systematic error term and a suitable model. The unknown para-
meters are , and . Since is a random error subjected to

N(0, )2 , the parameters that need to be estimated are , and 2.
In the parameter estimation, it is firstly assumed that the spatial cor-
relations can be represented by the first-order spatial weight matrix
( =s 1).

The steps of parameter estimation are as follows:
Step 3.1 Estimate parameters and 2 using the least-squares al-

gorithm.

= X X y Wyˆ ( X) ( )' 1 ' (5)

=
n

y Wy X y Wy Xˆ 1 ( ) ( )2 '
(6)

Step 3.2 Estimate parameter using the maximum likelihood
method.

The likelihood function of the model is given as

=y I W y Wy X y Wy XL( , , ) 1
2

| |exp{ ( ) ( )
2

}n n
2

'

2

(7)

The logarithm of Eq. (7) is computed as

= +y ln n ln ln I W

y Wy X y Wy X

lnL( , , ) 2
2

| |

1
2

( ) ( )

n
2 2

2
'

(8)

Input ˆ and ˆ2 into Eq. (8) to obtain the following relationship

= + +y n ln n e e e e ln I WlnL( )
2

(1 2 )
2

ln( ) ( ) | |n0 1
'

0 1

(9)

The nonlinear optimization method is used to maximize the like-
lihood function and the estimated value ˆ of is obtained.

Step 3.3 Update ˆ and ˆ2 using the new estimated value ˆ in step
3.2.

Step 3.4 Repeat steps 3.1–3.3 until parameters convergence.
After obtaining the estimated values of parameters for the profile, if

the residuals still have spatial correlations, the +s 1 spatial weight
matrix should be added until there are no spatial correlations in the
observations.

The estimated values of the parameters can be given by

= = … …c b b b[ ] [ ]m m m m m sm m m rm
' ' '

1 2 1 2 (10)

which have a normal distribution with mean vector µ and covariance
matrix .

Step 4. Design control chart
Two control charts are designed in this step: One is the T2 control

Fig. 3. Circular profiles of several typical features.

Table 1
The geometric shape and error source of several L-F polynomial.

Fourier
i

Legendre
j

Fourier function
Fi

Legendre polynomial
Pj

Cylindrical radius feature
rij

Geometric shape Error source

0 1 0 z z Axial taper misalignment
of spindle/work centers

0 2 0 (3z2-1)/2 (3z2-1)/2 Axial bump Workpiece deflection
1 0 cos( ), sin( ) 1 +cos( ) sin( ) Axial eccentricity Spindle rotation
1 1 cos( ), sin( ) z z( +cos( ) sin( )) Axial tilt Chuck clamping
1 2 cos( ), sin( ) (3z2-1)/2 [(3z2-1)/2]( +cos( ) sin( )) Banana shape Workpiece deflection and spindle rotation
2 0 cos(2 ), sin(2 ) 1 +cos(2 ) sin(2 ) Bi-lobe circumflex Spindle rotation
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chart for the parameters, the other is the individual control chart for the
residuals. Assuming the false rate is ', the first type of error probability
is = 1 1 ' .

The T2 statistic is computed as

=T c µ c µ( ) ( )m m
T

m
2 1 (11)

The upper control limit (UCL) is computed as

= m
m

UCL ( 1)
n m n

2

, /2,( 1)/2 (12)

When the number of parts is large (m>100), =UCL n,
2 can be

used as an approximate control limit.
The residual statistic is given by

=e I W y Xb( )m m m (13)

The estimated variance of the residual is =m
e e
n

2
1

m m'
.

A traditional Shewhart-type control chart can be used to monitor 2.
The upper and lower control limits are given as

=

=

=

n

n

UCL
1

CL

LCL
1

n

n

2

2 , 1
2

2

2

(1 2 ), 1
2

(14)

After obtaining the control chart limits, the quality characteristics of
circular profiles can be monitored. If the statistics of the observation
points are beyond the control limits, the production process is out of
control and additional detection is required.

2.3. Cylindrical profile monitoring

The cylindrical profile is a three-dimensional profile consisting of
multiple circular profiles. In the cylindrical coordinate system, a third
coordinate for measuring the height is added to the two-dimensional
polar coordinate system and represented by. In the axial direction, the
measurement points are equally spaced and points with the same z
value constitute a layer; each layer is regarded as a circular profile. In
the radial direction, the position of a point is represented by θ.
Therefore, the radius of a measurement point on the cylindrical co-
ordinate system can be obtained by z and , and is expressed as r z( , ).

Unlike in the circular profile, radial and axial errors both exist in the
cylindrical profile. The radial error is represented by the Fourier series
as the circular profile. In the axial direction, the misalignment of
spindles and work centers, workpiece deflection, and thermal expan-
sion etc. will cause axial errors [40]. Zhang et al. [21] analyzed the
effects of various error sources on the geometric error of cylindrical
parts and showed that the axial errors which are created in cylindrical
workpieces by manufacturing error sources can be modelled by the
Legendre polynomial. The Legendre polynomial is complete and or-
thogonal, which ensures the independence of the coefficients. There-
fore, the Legendre polynomial is basically consistent with the axial
direction error of the cylindrical characteristics, the axial error can be
represented by the Legendre polynomial as in Eq. (15).

=
=

=

=

= +

P z
P z z

P z z

P z z z

P z z z

( ) 1
( )

( ) 1
2

(3 1)

( ) 1
2

(5 3 )

( ) 1
8

(35 30 3)

0

1

2
2

3
3

4
4 2

(15)

By analyzing the combination of Legendre polynomial and Fourier
function, we can get cylindrical profiles of different shapes. Glenn [41]
used the multiplication of the axial and radial functions to represent the

radius errors. Zhang et al. [21] analyzed the possible forms of axial
errors. They confirmed that the form error can be expressed by the
polynomial of z . And they also utilized the Legendre-Fourier (L-F)
polynomial to express the systematic error term of the cylindrical
profile. The L-F polynomial is the multiplication of the Fourier and
Legendre function and can be used to model the cylindrical error, which
is presented in Equation (16).

= +
= + +

r z r r z
A P z A P z i B P z i

( , ) ( , )
( ) [ ( )cos( ) ( )sin( )]j j ij j ij j

0

0

(16)

where z [ 1,1]; [ , ]; P z( )j is the j th Legendre polynomial
function indicating the deviation in the z-axis direction; icos( ) re-
presents the deviation in the x-axis direction and isin( ) represents the
deviation in the y-axis direction. icos( ) and isin( ) make up the radial
variation of the cylinder, which can be represented by Fi. r0 is the
average radius of the workpiece and can be calculated as A P z( )j j0 . r
is the shape error at the z( , ) point and can be calculated by the
multiplication of the Fourier and Legendre functions. The coefficients in
the L–F polynomial can be calculated as

= = =

= =
A

r P z i
P z i

( )cos( )
( )cos ( )ij

k
t

l
u

kl j k l

k
t

l
u

j k l

1 1

1 1
2 2 (17)

= = =

= =
B

r P z i
P z i

( )sin( )
( )sin ( )ij

k
t

l
u

kl j k l

k
t

l
u

j k l

1 1

1 1
2 2 (18)

where k is the order of a point in z axis; t is the total number of points in
z axis; l is the order of radial azimuth and u is the total number of radial
azimuths. The value of A j0 can also be estimated by Eq. (17).

Table 1 and Fig. 4 shows several typical features of cylindrical
profiles, where P Fj i represents the order of the L-F polynomial.

Similar to the monitoring process for circular profiles described in
subsection 2.2, the steps of the cylindrical profile monitoring can be
defined as follows:

Step 1. Same as the circular space correlations test in subsection 2.2,
step 1. Moran and LM test are performed to test cylindrical spatial
correlations and to choose an appropriate model.

Step 2. Determine the systematic error term. Because the average
radius has been removed from the observed value. The first part on the
right of Equation (16) should be ignored in the systematic error term.
Therefore, the systematic error term can be written as

= +X b A P z i B P z i[ ( )cos( ) ( )sin( )]n m ij j ij j
'

(19)

The values of i and j corresponding to the order of Fourier function
and Legendre polynomial can be briefly prespecified by industrial
knowledge and also be determined by the frequency decomposition of
measurements. Damir [38] proposed the significant harmonics of cy-
lindrical surfaces for reference, but they did not give the value of the
corresponding polynomials. Colosimo et al. [28] gave six basic com-
ponents that were shown to be significant to describe the cylindrical
surfaces. We also utilize these six orders of polynomials as the basic
components to represent the cylindrical profile errors in experiments.
The corresponding polynomial is shown in Table 2.

Step 3. Estimate the parameters of the selected model. Because the
cylinder is spatial, the value of the weight matrix is different from that
in the circular profile. After aligning the cylindrical measurements, the
weight matrix can be represented by the rook-based contiguity (points
adjacent to a certain point in four directions, weighted to 1) or the
queen-based contiguity (points adjacent to a certain point in eight di-
rections, weighted to 1).

Step 4. The design process for the cylindrical profile control charts is
the same as that in the circular profile monitoring, as described in sub-
section 2.2. T2 and the residual statistics are calculated using Eqs. (11)
and (13) and the control limits are obtained using Eqs. (12) and (14).
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3. Simulation

3.1. Circular profile

The experimental parts presented by Colosimo et al. [30] are used as
references in this subsection. The authors sampled 100 C20 cylinders
machined from an original diameter of 30 mm to a nominal diameter of
26 mm as experimental parts. A total of 748 points were sampled in
each circular profile by using a coordinate measuring machine (CMM).

3.1.1. Simulation experiment
The simulation data is processed based on the circular profile

monitoring process described in subsection 2.2. The steps are as fol-
lows:

Step 1. Establish a suitable parametric model.
First, the spatial correlation of each profile is examined by the Moran

and LM test. In the actual operation, Matlab space measurement toolbox
‘jplv7’ can be used in the Moran and LM test. The test results are pre-
sented in Table 3. As can be seen from the results in the table, there is
strong spatial correlations among the observations according to the result
of Moran test. And according to the results of LM test, the LM-Lag is more
significant, which proves that there are strong correlations in observa-
tions. Therefore, it is reasonable to establish a SLM-based model.

Step 2. Determine the systematic error term
In this step, the decomposition is implemented by harmonic se-

paration. The first Fourier harmonic =b k( 0)m0 reflects the position of
the center of the circle and the second Fourier harmonic =b k( 1)m1 is
the nominal radius of the sampled profiles. Since the circle in the ex-
periment has its center at the origin and the nominal radius is sub-
tracted from the observations, the values of b m0 and b m1 are both zero.
The value of k is obtained by the Fourier decomposition. Taking the
former 50 harmonics, as shown in Fig. 5, the Fourier decomposition
exhibits strong amplitudes in the 2nd and 3rd harmonics while others
are almost zero and can be ignored. therefore, the systematic error term
in this case is represented by k = 2, 3 harmonics, and written as

= + +

+

X b N b f t b f t b f t

b t

2/ [ cos( ( 1)) sin( ( 1)) cos( ( 1))

sin(3( 1))]
n m
'

3m 2 4m 2 5m 3

6m (20)

Step 3. Parameter estimation
First, the first-order correlation matrix is selected to estimate the

parameters. ρ and β are calculated as in subsection 2.2 and expressed as
= =c b b b b[ ] [ ]m m m m m m m m

' ' '
1 2 3 4 . Next, the Moran test is used to ana-

lyze the spatial correlations of the residuals until the results of the test
statistics are not significant.

Step 4. Design control chart
TheT2 statistics of these 100 profiles are calculated according to Eq.

Fig. 4. Cylindrical profiles of several typical features.

Table 2
The basic components of L-F polynomial.

k Order of Legendre polynomial Order of Fourier function L-F

1 0 2 +cos2 sin2
2 0 3 +cos3 sin3
3 1 0 z
4 1 2 +z(cos2 sin2 )
5 1 3 +z(cos3 sin3 )
6 2 0 (3z2-1)/2

Table 3
Results of Moran and LM test.

Statistics Statistical value P value

Moran-istat 19.0004 0.000
LM (lag) 139.3217 0.000
LM (error) 13.5151 0.000

Fig. 5. Fourier decomposition map for the former 50 harmonics of simulated
circular profiles.

C. Zhao, et al. Journal of Manufacturing Systems 54 (2020) 35–49

40

Author's Personal Copy



(11). Assuming the false rate = 1%' for each control chart, the prob-
ability of type I error is = =1 1 0.5013%' . The upper control
limit is = =UCL 16.74960.005013,5

2 . The control limits of 2 are calcu-
lated by Eqs. (13) and (14). Fig. 6 shows theT2 and 2 control charts for
the 100 simulated circular profiles in phase I.

3.1.2. Method comparison
The comparison of the proposed method with other methods, based

on the dataset provided by Colosimo et al. [30], is described in this
subsection. Currently, there exist several common methods for mon-
itoring circular profiles.

1 Out-of-roundness (OOR)
OOR is the degree of the cross-section close to the theoretical circle,
which is used to evaluate the accuracy of circularity. The LSC
method is a common and convenient method to calculate the OOR
value; the OOR value is calculated using the difference between the
maximum and the minimum distance from the actual profile to the
least squares circle. Each circular profile corresponding to an OOR
value can be monitored using the Shewhart control chart. If the
corresponding OOR value is not larger than the upper control limit,
the circular feature conforms to the requirement.

2 Location Control Chart (LOC)
LOC is proposed by Boeing Commercial Airplane Group [[34]]. This
method collects measurement data at each location and monitors
the measurements by plotting them in the same coordinate system.
After profiles registration (the process of feature registration algo-
rithm can be referred to Colosimo and Pacella [23]), the Shewhart
control chart is applied to each observation point under controlled

conditions. If the observed shape is in control, the observations
should be within the control limits with a given probability. The
control limits of the LOC are calculated by the mean and standard
deviation of these measurement points on the same position.

3 Spatial Autoregressive Regression (SARX)
SARX is proposed by Colosimo et al. [30] to monitor circular pro-
files. This method is based on the SEM which considers the effect of
spatial correlations on residuals. They assumed that the observa-
tions on each profile is consist of systematic term and error term.
Comparing with Eq. (2), the expression of observations based on
SEM can be written as follows:

= +y X v'

= +v Wv

where X ' is the systematic term; v is the error term;W is the weight
matrix and is the coefficient of spatial correlations. Based on the
regression method, the author proposed a residual correlation model
used in combination with control charts. This method considers the
effect of spatial correlations on residuals and analyzes the mon-
itoring process of circular profiles. The difference between SLM
model and SARX model is the representation of spatial correlations.
In SLM, spatial correlations are represented in a separate term.
While in SARX, spatial correlations are included in the error term.
These two methods are based on the different models and have
different effects. For better comparison, T2 and residuals control
charts are both used in these methods. The difference is the value of
the statistics and the control limits.

4 Principal Component Analysis (PCA)
PCA is also a practicable method in circular profile monitoring.
Colosimo and Pacella [23] used PCA to identify systematic patterns
in roundness profiles. Wang et al. [25] used this method to monitor
the multimode near-circular shape profiles. In this paper, PCA is
used as a comparison method by the means of monitoring the T2

Fig. 6. Control charts of 100 circular profiles in phase I.

Table 4
Mean of ARL results for 1000 simulations in phase II.

OOR LOC SARX PCA SLM-based

Spindle = 0.0051 49.41 63.33 23.48 66.67 23.17
= 0. 011 54.23 60.44 13.88 18.18 12.2
= 0. 051 53.96 4.63 1.37 5.71 1.53
= 0.11 78.48 1.02 1.23 2.06 1

Bi-lobe = 0. 0052 66.83 10.54 4.86 76.92 4.3
= 0. 012 18.42 1.06 1.28 19.23 1.2
= 0. 052 1 1 1 1.78 1
= 0. 12 1 1 1 1 1

Tri-lobe = 0. 0053 61.53 10.58 5.14 52.63 4.95
= 0. 013 10.77 1.05 1.23 7.69 1.32
= 0. 053 1 1 1 1.38 1
= 0. 13 1 1 1 1 1

Table 5
Polynomial orders in the simulation.

Order of Legendre polynomial Order of Fourier component xkn

0 0 P z( )0
1 2 P z( )cos(2 )1
1 2 P z( )sin(2 )1
2 0 P z( )2
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statistics of principal components and the squared prediction error
(SPE). We retain the principal components which can explain over
80 % of the total variance.

This subsection describes the comparison of the performances of
these methods in phase II. The goal of phase II is to detect changes in
the monitoring process as promptly as possible. The monitoring ap-
proaches are compared in terms of the average run length (ARL), which
is defined as the number of parts tested until the first out-of-control
signal is recorded. Therefore, assuming that the false-alarm prob-
abilities of these methods are equal to 1 % in phase I, 1000 circular
profiles with the same parameter distribution are simulated to obtain
the control limits of these methods. To evaluate the performance in
phase II, simulations are performed under a total of three out-of-control
conditions: spindle motion error, bi-lobe error and tri-lobe error.

1) Spindle motion error: +y p( ) sin( )n p p
2

1
1
2 ;

2) Bi-lobe error: + +y p c c( ) [ cos(2 ) sin(2 )]n p n p n p
2

2 1 2 ;

3) Tri-lobe error: + +y p c c( ) [ cos(3 ) sin(3 )]n p n p n p
2

3 3 4 .
In phase II, each condition is simulated 1000 times to obtain the

average of ARL. The ARL results of these methods under the three
conditions are presented in Table 4. Performance comparison is ob-
tained by simulating profiles according to the phase II models pre-
viously described and computing the ARL obtained by using the control
limits in the phase I.

Table 4 shows that the proposed method has the lowest ARL value
in most cases. LOC and SARX also perform well in bi-lobe and tri-lobe
cases. When is small, which means that the change is not obvious, the
SLM-based and SARX methods have good performance compared with
the other methods. The LOC method demonstrates acceptable perfor-
mance as well when the change is obvious. The OOR method is least
effective because the OOR value cannot reflect the original shape of the
profile. The effect of PCA is not as good as expected. It is not sensitive to
minor changes. As can be seen from the results in Table 4, the methods
of considering spatial correlations are obviously better than the or-
dinary method.

3.2. Cylindrical profile

3.2.1. Simulation experiment
In this stage, 100 cylinders are simulated using the parameters listed

in Table 5. In each cylindrical profile, 10 layers are sampled with 98
points per layer.

Similar to the procedure of circular profile monitoring, first, the
Moran and LM tests are performed for the observations to establish a
suitable spatial correlation model. Next, the parameters andT2 statistics
are calculated. Last, two control charts for monitoring the T2 statistics
and residuals are designed to obtain the monitoring results. The simu-
lation results are presented in the next subsection.

3.2.2. Method comparison
On referring to the case of the circular profiles, the five methods:

OOR, LOC, SARX, PCA and SLM-based can be implemented to monitor
the cylindrical profiles. In phase I, 1000 cylindrical profiles are simu-
lated to calculate the control limits of these methods with the false-
alarm probability equal to 1 %. Therefore, the control limits can be used
as references in phase II. To evaluate the performance in phase II, si-
mulations are performed by adding axial and radial errors, represented
by the following models:

1) Axial error: +P (cos(2 ) sin(2 ))1 2 ;
2) Radial error: +P (cos(4 ) sin(4 ))2 0 ;
3) Axial and radial errors: +P (cos(4 ) sin(4 ))3 2 .
In this simulation, each condition is simulated 1000 times to obtain

the average of ARL in phase II. The mean of the ARL of these methods is
given in Table 6.

Table 6 shows that SLM-based and SARX methods are significantly
superior to others. In the case of obvious changes, the results of LOC are
close to those of the SLM-based and SARX, and they all demonstrate
satisfactory results in comparison with those of OOR and PCA methods.
The PCA is not sensitive in the small change situations and the OOR
method is the least effective method of the five methods. In general, the
SLM-based method obtains the lowest ARL value in most cases. It can
also be seen from Table 6 that the axial error is easier to detect than the
radial error.

4. Case study

This section describes the validation of the performance of the
proposed method using the cylinder bores of B12 serial engines
(Fig. 7(a)). The cylindrical features of engine cylinder bore are typically
generated by honing operations. The experimental setup is shown in
Fig. 7(b). The cylindrical hole is machined by the vertical and rotational
motion of the honing head. The standard diameter of the bore is 71 mm
and the actual diameters are measured using a coordinate measuring
machine. Twelve engines (including six qualified engines and six un-
qualified engines which were honed to destroy the shape of the cy-
linder) including 48 bores are chosen as the experimental objects. Ten

Fig. 7. (a) B12 engine with four-cylinder bores. (b) Bore honing experimental system.

Table 6
Mean of ARL results in phase II.

OOR LOC SARX PCA SLM-based

Axial error = 0.011 50.47 39.29 20.51 77.78 15.1
= 0.051 43.15 24.67 1.83 46.67 1.61
= 0. 11 27.51 5.82 1.32 27.77 1.35

Radial error = 0. 012 54.73 31.94 5.62 83.34 5.38
= 0. 052 48.69 1.63 2.83 28.57 2.64
= 0. 12 10.93 1 2.64 1.60 2.76

Both = 0. 013 63.14 36.23 19.07 66.67 18.28
= 0. 053 68.59 15.87 1.63 39.16 1.59
= 0. 13 46.16 2.91 1.13 18.18 1.21

C. Zhao, et al. Journal of Manufacturing Systems 54 (2020) 35–49

42

Author's Personal Copy



Fig. 8. Circular profile control charts for the five methods in phase I.
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Fig. 9. Circular profile control charts for the five methods in phase II.
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layers in each bore with 98 points per layer are sampled using the
CMM.

4.1. Circular profile

Eighty-four qualified circles are chosen as phase I objects and the
control limits are obtained from them. OOR, LOC, SARX, PCA and SLM-
based methods are implemented in these 84 circular profiles in phase I.
The results are shown in Fig. 8.

In phase I, the historical samples are analyzed to identify the in-
control process behavior. The control limits of each method are ob-
tained through the calculations. There are eleven shapes out of control
when using the LOC method, while the Type I error rates of the other
methods are within acceptable limits. Therefore, the LOC method is too
strict in phase I and it is not suitable for use in this case.

In phase II, the number of out-of-control parts detected by these
methods is compared. One-hundred-and-twenty circular profiles from
unqualified engine bores are selected to compare the detection rates of
the considered methods. Fig. 9 shows the OOR, LOC, SARX and SLM-
based control charts of the 120 circular profiles in phase II. Table 7 lists
the number of unqualified parts detected using these methods.

Fig. 9 and Table 7 show that the detection results of SARX and SLM-
based methods are notably higher than those of the OOR, PCA and LOC
methods. Combining with Fig. 8, the false-alarm probability of LOC is
extremely high in phase I, and thus, it is not suitable for use in this case.
SARX and SLM-based methods exhibit similar results because they both
consider the impact of spatial correlations. The OOR and PCA method
can barely detect the out-of-control situation in this case.

In this case, the detection rate of SLM-based method has a sig-
nificantly improvement compared with OOR and PCA methods.
Furthermore, the SLM-based method demonstrates better results than
the SARX method does, which verifies the spatial correlation test results
that the spatial correlation in observations is more significant. But
overall, the detection rates of these methods are very low, so that the
unqualified parts are difficult to detect. The cause of this phenomenon
may be the selected samples are unqualified cylinders, for which the
circularities are under control.

4.2. Cylindrical profile

Similar to the circular profile monitoring, five methods: OOR, LOC,
SARX, PCA and SLM-based are used to monitor the cylindrical profiles.
Forty-eight cylinders are evaluated to compare the performance of

these methods. Fig. 10 shows the radial errors of 24 qualified and 24
unqualified cylinder bores.

With reference to the in-control machined surfaces, control charting
aims at detecting the possible out-of-control shapes in this set of items.
To obtain the control limits of the control charts in phase I, the control
charts pertaining to the five methods are shown in Fig. 11.

In Phase I, the control limits can be obtained from the in-control
cylindrical profiles and act as a reference for phase II. Meanwhile, the
control charts show that the sample profiles are within the control
limits except for the 16th part considered in the SARX method and the
17th part considered in the SPE control chart of PCA. Due to the small
sample size in this experiment, the false rate of these two methods is
4.17 % and cannot be neglected. But these methods are still used as
comparison methods in phase II.

In phase II, the performances of these methods are evaluated via the
detection rate. The number of out-of-control parts detected by these
methods are compared. Fig. 12 shows the control charts of 24 out-of-
control cylindrical profiles in phase II; Table 8 presents the number of
unqualified parts detected by these methods.

As can be seen from the Fig. 12 and Table 8, the detection rate of the
SLM-based method is the highest and the second highest rate is that of
the SARX method, approximately the same as that of the SLM-based
method. The OOR method is the least effective. The PCA test results are
the same as LOC but there is a point beyond the control limit in phase I.

In the case of cylindrical profiles, the SLM-based method demon-
strates better performance than SARX does and the detection rate has
been improved 8.3 %, which indicating that the spatial correlations in
observations are more in line with the actual situation.

The difference between SARX and SLM-based method is based
mainly on the T2 statistics and the value of residuals, because both the
SARX and SLM-based method eliminate the influence of spatial corre-
lations. T2 control chart is monitoring the coefficients of spatial corre-
lations and the systematic error. Since the two methods have different
representations of spatial correlations, the corresponding T2 statistics
are different. In Fig. 12, phase II, The T2 control chart of SLM can detect
two additional out-of-control parts: the third point and the twenty-third
point. The other advantage of SLM-based method is that in the T2

control chart of phase I, Fig. 11, the 16th T2 statistic of SARX is ob-
viously out of the control limits, which will cause erroneous judgment
that the controlled part will be recognized to be out of control.

Moreover, the detection rate for cylindrical profiles is notably
higher than that for circular profiles. One of the possible reasons is that
the axial change of a cylinder is easier to detect than the radial change;
another is that the selected samples are unqualified cylinders, for which
the circularities are under control.

4.3. Error form analysis

Error form analysis can help engineers examine the cause of the
errors for the machined parts and improve the processing technology.
By removing the effects of random errors and analyzing the systematic

Table 7
Number (rate) of unqualified parts detected using the five methods.

Number of unqualified parts OOR LOC SARX PCA SLM-based
2 30 45 4 47

detected 1.67 % 25 % 37.5 % 3.33 % 39.2 %

Fig. 10. Radial errors of cylindrical profiles.
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Fig. 11. Cylindrical profile control charts for the five methods in phase I.
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Fig. 12. Cylindrical profile control charts for the five methods in phase II.
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errors of out-of-control parts, the cause of the error can be obtained and
corrected during the manufacturing process. In this case, the schematic
of the corresponding error form is shown in Fig. 13. As seen, the error
appears as a radial half-frequency and axial tilt. According to the ana-
lysis of machining errors of cylindrical parts carried out by Zhang et al.
[21], the possible reason for the radial half-frequency error is whirling
or the presence of a ball bearing with a worn ball, and axial tilt errors
can occur due to the misalignment of spindle or work centers. Based on
the results of the analysis, the possible reasons of the machined error
can be determined, and the processing stage can be improved in a
targeted manner.

5. Conclusion

Geometric profile monitoring has traditionally faced the problem
pertaining to measurement points with spatial correlations. There exist
methods such as OOR, LOC, PCA and SARX. The former three do not
consider the spatial correlations, while the SARX method takes into
account the spatial correlations in the error term. This paper discusses
the spatial correlations of observations and proposes a SLM-based
method for circular and cylindrical profile monitoring. Taking engine
cylinder bores as an example, the detection rates of the proposed
method demonstrate an improvement of 1.7 % and 8 % in the circular
and cylindrical profiles compared with SARX. Besides, these results are
much better than those obtained by the other methods. In addition, the
PCA method is not effective in this case and another disadvantage of
PCA is that the principal components may be a combination of multiple
error shapes and difficult or impossible to interpret. Although both
SLM-based and SARX models consider spatial correlations, these two
models represent different spatial interaction effects. SLM is the mutual
effect among the response variables; SARX is the influence of the ad-
jacent units’ errors on the observed value. In the case study, the results
of phase II indicated that the performance of considering spatial cor-
relations methods is better than the performance of the ordinary
methods, and the results also indicated that the spatial correlations in
observations are more in line with the actual situation.

Furthermore, by means of modelling and analyzing systematic error
terms, the SLM-based method can also provide reference concerning the
probable causes of machining errors in practical manufacturing and
potential directions for improvement.

There are several possible directions for future research.

(1) In this study, only the circular and cylindrical profiles are taken as
examples to study the monitoring process of geometric specifica-
tions with spatial correlations. The proposed method is general and
can be utilized for other geometric specifications (e.g., free-form
surfaces).

(2) Spatially correlated profile monitoring comprises challenging re-
search that requires additional effort. This method provides re-
ference for model-building of spatial correlation profiles and can be
combined with other control charts such as exponentially weighted
moving-average and cumulative sum control charts to detect small
drifts in geometric specifications.

(3) This method can be extended to nonparametric profile monitoring
with spatial correlations. When a profile is too complicated to be
parameterized, the form of the parameter model can be replaced by
a nonparametric form.
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